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Diamagnetism and Paramagnetism
The magnetic moment of a free atom has the nuclear and electronic 

magnetic moments. Magnetic moments of nuclei are of the order of 10-3 

times smaller than the magnetic moment of the electron. The electronic 

magnetic moments has three principal sources: 1) the spin with which 

electrons are endowed; 2) the orbital angular momentum about the nucleus; 

3) the change in the orbital moment induced by an applied magnetic field. 

Diamagnetism is associated with the tendency of electrical charges partially 

to shield the interior of a body from an applied magnetic field. In an electron 

orbit within an atom, the magnetic field of the induced current is opposite to 

the applied field, and the magnetic moment associated with the current is a 

diamagnetic moment. Even in a normal metal there is a diamagnetic 

contribution from the conduction electrons, and this diamagnetism is not 

destroyed by collisions of the electrons. 
The magnetization M is defined as the magnetic moment per unit volume. 

The magnetic susceptibility per unit volume is defined as 

where B is the applied macroscopic magnetic field intensity. 



(χ
)

Magnetic Susceptibility 

Characteristic magnetic susceptibilities:  

for diamagnetic substances  χ < 0

for paramagnetic substances χ > 0



The magnetic moment of an atom or ion in free space is given 
by 

Magnetic Moment of an Atom 

where the total angular momentum ℏJ is the sum of the orbital ℏL and 

spin ℏS angular momenta. For electronic systems a quantity g called the g 

factor or the spectroscopic splitting factor  and the Bohr magneton μB is 

defined as eℏ/2mc. The energy levels of the system in a magnetic field are

where mJ is the azimuthal quantum number and has the values J, J −

1, . . . , −J.  For a single spin with no orbital moment we have mJ = ± 1/2 

and g = 2, whence the energy level U = ±1/2 μBB. The equilibrium 

populations of the two levels are 

N = N1 + N2 and

,      J = L + S



The fractional populations of the two levels are shown below and the 
resultant magnetization M for N atoms per unit volume is, with x = μB/kBT, 

At high temperature, we have x << 1, 
tanh x ≃ x, and 

In general, an atom with angular momentum quantum number J in a 

magnetic field has 2J + 1 equally spaced energy levels. The magnetization 

is thus given by 

where the Brillouin function BJ is defined by 



For x = μB/kBT << 1, we have and the susceptibility is 

Here p is the effective number of Bohr magnetons, 

,  C is the Curie constant. Curie law :



The Hund rules as applied to electrons in a given shell of an atom affirm that 

electrons will occupy orbitals in such a way that the ground state is 

characterized by the following: 

Hund rules 

1. The maximum value of the total spin S allowed by the exclusion principle; 

2. The maximum value of the orbital angular momentum L consistent with 

this value of S; 

3. The value of the total angular momentum J is equal to |L − S| when the 

shell is less than half full and to L + S when more than half full. When the 

shell is just half full, the application of the first rule gives L = 0, so that J = S. 

The first Hund rule has its origin in the exclusion principle and the coulomb 

repulsion between electrons. The second Hund rule is best approached by 

model calculations. The third Hund rule is a consequence of the sign of the 

spin-orbit interaction: For a single electron the energy is lowest when the 

spin is antiparallel to the orbital angular momentum. 

Example of the Hund rules: The ion Ce3+ has a single f electron with l = 3  and 
s = ½. The J value by the preceding rule is |L−S| = L−1/2 = 5/2. 



The Curie temperature Tc is the temperature above which the spontaneous 

magnetization vanishes; it separates the disordered paramagnetic phase at T 

> Tc from the ordered ferromagnetic phase at T < Tc. We can find Tc in terms 

of the constant λ. Consider the paramagnetic phase: an applied field Ba will 

cause a finite magnetization and this in turn will cause a finite exchange field 

BE. If χp is the paramagnetic susceptibility, 

Ferromagnetic Order 
Given an internal interaction tending to line up the magnetic moments 

parallel to each other, we shall have a ferromagnet. Let us postulate such an 

interaction and call it the exchange field BE. We treat the exchange field as 

equivalent to a magnetic field and, in the mean-field approximation, we 

assume each magnetic atom experiences a field proportional to the 

magnetization: BE = λM , where λ is a constant, independent of temperature. 

The paramagnetic susceptibility is given by the Curie law χp = C/T, where C is 

the Curie constant. Then, we have the Curie-Weiss law 



The exchange field gives an approximate representation of the quantum 

mechanical exchange interaction. On certain assumptions it is shown in 

texts on quantum theory that the energy of interaction of atoms i, j bearing 

electron spins Si, Sj contains a term U = −2JSi･Sj , where J is the exchange 

integral and is related to the overlap of the charge distributions of the 

atoms i, j. This is called the Heisenberg model. 

Heisenberg model

The curves of M versus T obtained in 

this way reproduce roughly the 

features of the experimental results, 

as shown in the left for nickel. As T 

increases, the magnetization 

decreases smoothly to zero at T≃ Tc. 

This behavior classifies the usual 

ferromagnetic/paramagnetic 

transition as a second-order transition. 

nickel



Exchange Interaction Between Free Electrons 

Consider two free electrons i and j and their pair wavefunction 𝜓ij , 

𝜓ij = ψi(ri)ψj(rj) − ψi(rj)ψj(ri) =

The probability that electron i is to be found in volume element dri and 

that electron j is to be found in volume element drj is then equal to |𝜓ij|
2 

dridrj: 
|𝜓ij|

2 dridrj

This expression shows all of the crucial features: the probability of finding 

two electrons with the same spin at the same place vanishes for every ki 

and kj. For a particular spin-up electron, the other electrons with the same 

spin cannot screen the Coulomb potential of the ion cores so well locally, 

which leads to a reduction of the energy of the spin-up electron. This 

energy reduction is reinforced if the highest possible percentage of all the 

electrons have the same spin as the spin-up electron. 



Let’s consider the Fermi electrons and introduce relative coordinates 

between the electrons i and j with r = ri − rj. We then ask what is the 

probability that a second spin-up electron is at a distance r in a volume 

element dr. The probability and effective electron density acting on the 

spin-up electron are then 

The existence of an exchange hole implies a positive exchange coupling, i.e., 

the exchange integral J is positive in the exchange energy U = −2JSi･Sj .



Magnons
A magnon is a quantized spin wave. It can be treated classically, just as we 

did for phonons. The ground state of a simple ferromagnet has all spins 

parallel, as in Fig. (a). Consider N spins each of magnitude S on a line, with 

nearest-neighbor spins coupled by the Heisenberg interaction: 

In the ground state, Sp ･ Sp+1 = S2 and the energy of the system is U0 =

−2NJS2 . 

Consider an excited state with one particular spin reversed, as in Fig.

(b). This increases the energy by 8JS2, so that U1 =U0 + 8JS2. But 

we can form an excitation of much lower energy if we let all the spins

share the reversal, as in Fig. (c).



The elementary excitations of a spin system have a wavelike form and are 

called magnons as shown below. Spin waves are oscillations in the relative 

orientations of spins on a lattice; lattice vibrations are oscillations in the 

relative positions of atoms on a lattice. 

The dispersion relation for magnons in a 

ferromagnet in one dimension with nearest 

neighbor interactions is

At long wavelength, ka<<1, and (1−coska)≃1/2(ka)2 , 

, the frequency is proportional to k2 .

Top
View

Side
View



A classical example of magnetic structure determination by neutrons is 

shown below for MnO, which has the NaCl structure. At 80 K there are 

extra neutron reflections not present at 293 K. The reflections at 80 K may 

be classified in terms of a cubic unit cell of lattice constant 8.85 Å. At 293 

K the reflections correspond to an fcc unit cell of lattice constant 4.43 Å. 

Antiferromagnetic Order 

The spins in a single [111] plane 

are parallel, but are antiparallel 

in adjacent [111] planes. 



Materials are only antiferromagnetic below their corresponding Néel 

temperature, TN. This is similar to the Curie temperature as above the 

Néel Temperature the material undergoes a phase transition and 

becomes paramagnetic. 



Antiferromagnetic Magnons
By making the appropriate substitutions in the treatment of the 

ferromagnetic line, let spins with even indices 2p compose sublattice A, that 

with spins up (Sz = S); and let spins with odd indices 2p+1 compose sublattice 

B, that with spins down (Sz = −S). We consider only nearest-neighbor 

interactions, with J negative, and obtain the dispersion relation of magnons 

in a one-dimensional anti- ferromagnet. 

The dispersion relation for magnons 

in an antiferromagnet is quite 

different from that for magnons in a 

ferro-magnet. The graph on the left 

is the magnon dispersion relation in 

the simple cubic antiferromagnet 

RbMnF3 as determined at 4.2 K by 

inelastic neutron scattering. 



At temperatures well below the Curie point the electronic magnetic 

moments of a ferromagnet are essentially parallel on a microscopic scale. 

Actual specimens are composed of small regions called domains, within 

each of which the local magnetization is saturated. The directions of 

magnetization of different domains need not be parallel, and the application 

of an external magnetic field may be required to saturate the specimen. 

Ferromagnet Domains

Ferromagnetic domain pattern 

on a single crystal platelet of 

nickel. The domain boundaries 

are made visible by the Bitter 

magnetic powder pattern 

technique. The direction of 

magnetization within a domain 

is determined by observing 

growth or contraction of the 

domain in a magnetic field. 



• In weak applied fields the volume of 

domains  favorably oriented with respect 

to the field increases at the expense of 

unfavorably oriented domains; 

• In strong applied fields the domain 

magnetization rotates toward the 

direction of the field. 

Technical terms defined by the hysteresis 

loop are shown in Fig. The coercivity Hc is 

the reverse field that reduces B to zero; a 

related coercivity Hci reduces M or B − H 

to zero. The remanence Br is the value of 

B at H = 0. The saturation induction Bs is 

the limit of B − H at large H, and the 

saturation magnetization Ms = Bs/4𝜋. 



There is an energy in a ferromagnetic crystal which directs the magnetization 

along certain crystallographic axes called directions of easy magnetization. 

This energy is called the magnetocrystalline or anisotropy energy. 

Anisotropy Energy 

(bcc) (hcp)(fcc)

In cobalt, the anisotropy energy density is 

given by                                           where 𝜃 is 

the angle the magnetization makes with 

the hexagonal axis. At room temperature, 

the anisotropic constants: K1‘ = 4.1×106 

erg/cm3; K2’ = 1.0×106 erg/cm3. 



A Bloch wall in a crystal is the transition layer that separates adjacent 

domains magnetized in different directions. The entire change in spin 

direction between domains does not occur in one discontinuous jump across 

a single atomic plane, but takes place gradually over many atomic planes.

Bloch Wall

From Heisenberg equation, the extra 

exchange energy, wex = JS2𝜑2, gen-

erated between two spins making a 

small angle 𝜑 with each other. Here J 

is the exchange integral and S is the 

spin quantum number. If a total 

change of 𝜋 occurs in N equal steps, 

𝜑 = 𝜋/N, and the exchange energy 

per pair of neighboring atoms is wex = 

JS2 (𝜋/N)2 . 

The total exchange energy of a line of N +1 atoms is                             . 



The wall would thicken without limit were it not for the anisotropy energy, 

which acts to limit the width of the transition layer. Consider a wall parallel to 

the cube face of a simple cubic lattice and separating domains magnetized in 

opposite directions. We wish to determine the number N of atomic planes 

contained within the wall. The energy per unit area of wall is the sum of 

contributions from exchange and anisotropy energies: σw = σex + σanis.

Thickness of Bloch Wall

With a as the lattice constant, there are 1/a2 lines per unit area,                               

The anisotropy energy is of the order of the anisotropy constant (K) times 

the thickness Na, or σanis = KNa;  therefore 

Take derivative to find minimum N, 

For order of magnitude, N ~ 300 in iron. 

The total wall energy per unit area on this model is                                       .



Landau and Lifshitz showed that domain structure is a natural consequence 

of the various contributions to the energy --exchange, anisotropy, and 

magnetic-- of a ferromagnetic body. We may understand the origin of 

domains by considering the structures shown below:

Origin of Domains 

In (a) we have a single domain; as a consequence of the magnetic “poles” 

formed on the surfaces of the crystal with a high value of the magnetic 

energy (1/8𝜋)∫B2dV. In (b) the magnetic energy is reduced by roughly one-

half by dividing the crystal into two domains magnetized in opposite 

directions. In (c) with N domains the magnetic energy is reduced to 

approximately 1/N of the magnetic energy of (a). In domain arrangements 

such as (d) and (e) the magnetic energy is zero. 



Nuclear Magnetic Resonance
The magnetogyric ratio of a particle or system is the ratio of its magnetic 

moment to its angular momentum, and it is often denoted by the symbol 𝛾. 

We can then write the magnetic moment of a nucleus as                   ,

here I is angular momentum of the nucleus measured in ℏ.

With a applied magnetic field Ba = B0Ẑ, 

then

are the allowed values of Iz . 

A nucleus with I = ½, has two energy levels corresponding to mI = ±½, In a 

magnetic field B0 as in the above figure. If ℏω0 denotes the energy difference 

between the two levels, then ℏω0 = 𝛾ℏB0 or ω0 = 𝛾B0.

For the proton, 

For the electron, ,  𝜈 is magnetic absorption freqency. 



The principle of NMR usually involves three sequential steps:

1. The alignment (polarization) of the magnetic nuclear spins in an applied, 

constant magnetic field B0.

2. The perturbation of this alignment of the nuclear spins by a weak 

oscillating magnetic field, usually a radio-frequency (RF) pulse. The 

oscillation frequency required for significant perturbation is dependent 

upon the static magnetic field (B0) and the nuclei of observation.

3. The detection of the NMR signal during or after the RF pulse, due to the 

voltage induced in a detection coil by precession of the nuclear spins 

around B0. After an RF pulse, precession usually occurs with the nuclei's 

intrinsic Larmor frequency and, in itself, does not involve transitions 

between spin states or energy levels.
Proton



1.  Diamagnetic susceptibility of atomic hydrogen. The wave function of the 

hydrogen atom in its ground state (1s) is                                                 where 

                                                            . The charge density is                                    

according to the statistical interpretation of the wave function. Show that 

for this state                     and calculate the molar diamagnetic susceptibility 

of atomic hydrogen 

Problems

2. Magnon dispersion relation. Derive the magnon dispersion relation for a 
spin S on a simple cubic lattice, z = 6. Hint: Show first that

where the central atom is at ρ and the six nearest neighbors are 
connected to it by six vectors 𝛿. Look for solutions of the equations for                                                   
                                 of the form 



3. Néel temperature. Taking the effective fields on the two-sublattice 

model of an antiferromagnetic as 

show that 
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